
00=
N

I Technical Report ICMA-94-188

A POSTERIORI ERROR ESTIMATION
"NEW" APPROACH

by

Patrick J. Rabier

August, 1994

ICMA Department of Mathematics and Statistics
University of Pittsburgh

Pittsburgh, PA 15260

D'1cQUf.LTYIThrY U1r D

'20

6 0

A , .. ,;,•



i

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT

REPRODUCE LEGIBLY.

!S



I

A POSTERIORI ERROR ESTIMATION

"NEW" APPROACH

PATRICK J. RABMER

* 1. Preliminaries.

Let V, be a real Hilbert space and n : V x V - R a continuous bilinear form. It is a

more or less standard result that if o satisfies the conditions.,

(l.1a) inf sup > > , J

where c is a constant, and By

Diti) qi / ................................. ...........------

(1ib) n(v.cw) = 0. Vi, E V)} ,, =: i, 0

then there is L E GL(V). unique, such that Dist Avi ' or

(1.2) a(v, u,) = (Lv,, w),

and hence given t E V', there is a unique solution u E V of the problem

(1.3) ao .,) = r(,). V , E V'.

Indeed. existence of L C C(V) in (1.2) follows from the Riesz representation theorem,

and (1.1a) easily implies that L is one-to-one with closed range. Next. fromn closedness of

rge L and the relation rge L = (ker L ) ', and since condition (1.11)) implies ker L" {0},O)

we infer that L is onto V. i.e. L E GL(V') by Banach's theorem. Next. if y represents ( via

the Riesz representation theorem, that is, C)(0 = (q. r). Ve E V. . = L-'y is the unique

solution of (1,3).

* S

•4 -0,, , , , , i " . . . . . . . . . I I I II I i i i i i l l ll l - -



Conditions (1.la/b) include, but are not limited to, the case when o satisfies the hy-

pothesis of the Lax-Milgram lemma

From now on, we assume that V = HN(f) where Q' C R" is a bounded open subset

with Lipschitz continuous boundary r.

Let (Kh')I<hK<N be a collection of open subsets of fQ with Lipschitz continuous bound-N _
aries rK, and such that OK fL = $ if h" $ L and U (2K = Q2. For convenience, we

K=I
shall refer to (0,) as a "partition" P of Q.

We shall denote by I the set of pairs (K. L) with K # L such that meas (rl fn I-L) > 0.

Here, "mess" refers to the rK -, or equivalent ly rL- Lebesque measure. Also, we set

1K= {I<L<N:(K,L)E£}, C IK<N,

and

h-L =rh • L. V(K,L) El.

Let Pr be the disjoint union

r1= r I, It,
(h',L)EZ

(hence, in 'z, rKL and rLh are different although they coincide as subsets of R").

We introduce the space

L
2
(FP)-= 1 L

2
(rF, 1.).

(i,.L)rzI

Elements of L
2

(rZ) thus are collections A = (AOL) with AhL E L2
(rlh). Note that the

functions AKL and ALI, are generally different, despite the fact that they art both defined •

in the same subset r', Ftr. of R".

It is clear that there is a canonical identification

'.5,

SS
L2I~r n P~L(Ftl, \ r)

obtained by associating with A (01, 1,) E L2
(rI) the collection (A,,) defined by

Ahr Aht. VL E Ih,
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and vice-versa.

In future considerations, it will be convenient to use both notations (A/, L) and (A/,) for

elements of L2(rr). No confusion should arise from this since the number of indices used

immediately identifies which definition of L
2 (Fr) is being used.

The norm of L
2 (F') is the natural one, namely

iO~r0,r"
'Mr z IAi, L0orkL) = ( IA,, Iu~r\rs) •/

(h" L•:• ,=I

We shall also consider the spaces

14,- = (eN E H'(1,1 ) :'j, = 0 in r 0 rl, .

with norm induced by the norm of H'(!b,-), and their product

N
Hn'(P) = 'l, 1*',,

equipped with the product norm, denoted by 1" i-h.'.

Elements V of H,'(P) can be viewed as N-tuplcs (I'V, ) with 1%, E 1
',. or as functions

in S? (defined ahlost everywhere) such that "A, = C'K E V','. Both points of view will be

used later, and once again no confusion should arise from this.

A restriction map (trace) is defined:

v Ei H0J(P) - ( Et'r. .)f L2(171),

which is evidently continuous for the norm of the spaces involved.

There is a canonical embedding

not(•'-. H,(P)

defined by t - (t'v) where t,, =l," . On the other hand, the space L
2
(rz) can be split

into the direct sum

L2(F1 ) = A+ tiA-.

( ~3
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where

A+= r(Fhr):hL IrL, V(K.L)EI)

and

-= r(,,:' = -- , ,V(KL) E XI.

The following resalt characterizes the element of H'((1) among the elemetts of H('(P):

Proposition 1.1: Lett' = (t,.) E Ho(•'). Then, t, E HO(f0) if and only if (vt' ) E A+.

Proof: If v E P(fl) and rj" '-- A it is obviOtts that ' L • ýL i.e. l, r. ir.) E

A+. By denseness of )(9) into H.(0). cotttinitity of the trace HJ,(P) - L
2 (F1 ) and

closeduess of A+ in L 2(rz), this relation extends to the whole space H"l(W.

Conversely. we have H01(P) '-- L2 (Q) in the obvious way, and for ; E P(Q) and t E

H~o(P), we have

""9r .5,'" Y-' 8" Y-N1 1 N V

where vA- (vKj, t'" , ls) i. the outward unit normal vector along r,. Since p = 0 on

r, we find

and the terms frV 
t
'LY"L, cancel out front the hypothesis v'h = t'L on ri,1, since v',. =

t'L. It follows that

N
e 1 't! K

i.e. Ot/Ox, is represented by the L
2

(j?) function defined by Ovt 1/Ox, int 1,,. 1 < KT < N.
N

Thus. v E H'(Q). and since t= 0 in U a(r , r) = r, we have r E HJ(Q). 0

2. The space A-.
N

6 Every element A E A -cant be viewed as an element of (Ho'(P))' 11 1" , via

) At, 11,
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note that

II
(2.1) (AIl) -0, Vil E H,(Q), VA\ E A-.

since (hEI L

and the terms frKL AwUA and frKL AI.WL cancel out because wj, = iL on rhL (see p
Proposition 1.1) and AK -A1L on rhL if A E A-.

N
Definition 2.1: The space A_ is the choure of A - in (Hjt(P))' = H I,.

By definition, every A E A... is the limit in (Ht(r'))' of a sepisence Al E A-. Since

(A), u-) = 0, Vil E HO'(f) from (2-.1). we obtain by continuity that p

I (2.2) (A,' 0. VA E A - Vu' E H,(l).

Let A = (a,,) E (L°(f))"'' and let Ho.A(f?) be the subspace

HA M(f) = Iv' E H.'(0) : V " E L2(Q)},

equipped with the norm

l't'lh.,.AO (ll(l1.n + V ./.4V, .Io )I/ . S

Proposition 2.1: The mapping

v E D(Q) = (.4Vil, *1, ) E A-

(where ill, = rioK, I < K < N) can be extended as a linear continuous mapping from

HO, A(M) into A.

I.



~1..

Proof. It is plain that (0,'K/OvA) E A-. as soon as ', E N(9). In addition, by Green's 4
formula.

j !±J -j V.41, V,~ + j .V,-i,- tE .h"OVA I

Thus, adding up these relations, we find

I OV(A• ,n 1• CII,'.A.I n Ilulllih., V', E '(P,),

where C > 0 is a constant depending only upon A. Hence,

I( )II.. <_ C 1 , 4 ,n, Vv E P(Q),

where I1".r denote the norm in (H0(P))'. That (OVi,/OVA) ran he extended as an

element of A- for I, E H0'A(M) follows from this inequality and denseness of P(Q) into

HUI.A(Q) (for the 1I1 I.A.n nornm) by standard arguments. 0

N
Remark 2.1: Because A•- C (H0l(r))' = /11_',". elements of A- are N-tuples A = (AjJ)

I, = I
with AK E I". but unlike elements of A_, they cannot be identified with collections ( A,"L)

for (, L) E I (since elements of V'/ are not functions, they cannot be restricted to

subsets). 0

3. Application to error estimation in linear problems.

In addition to the coefficients A = (,,,) E (L-(9))" '" of the previons section. we also

consider b = (b,) E (L-l())" and c E L-(Q), and set

att,. w) = j AVe. Vu, -- j(b. Vt')u' + f.ctv,, V'. it, E Hot (Q).

We shall henceforth assume that a(b.) shove satisfies the conditions (l.la/b). Among

other things. this ensures that given f E L
2 (Q). there is a unique solution it E Ho(Q) of

the problem

o(71. I,) = Vv f. Hi' E

6 5O
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Observe that u solves the PDE

(3.1) -V-(AVu)+b Vu +cu f in it

whence V -(AVOu) = b Vu + cu - f E L2 (f0). i.e. vi E H..A(Q).

For I < K < N, let IA- : V x V1, - R he the (continuous) bilinear form

aK'('h, u') = AVR,' Vwh + j (b Vvhj )w,+ ,,+ C"Kh''h. VtA.W,, E IhV

We assume that each bilinear form ah, satisfies the conditions (1.la/h), so that given

si E H0'(fQ) the problem

(3.2) at,(01,1.v K) = ftt, = a R-(fi.v) + (AR,vOR), Vt', E VY-

has a unique solution 4h(AKh ) E VR for every A,- E V,"-. In particular, given A = (At,.) E

A-, there is a unique O(A) E HtNP) such that 61, = 4t,'(ARK) solves (3.2) for I < K < N.

The following theorem shows that the error t, - fi is characterized by a property of 6(A)

holding for one and only one A E A-.

Theorem 3.1: The following conditions are equivalent:

(i) O(A) E Ho(11),

(ii) ( AK()•h-)ir ) E A+,

Oiii) ¢(A) = u - ts.

(iv) A = (OUK/IOVA),

Proof: For (i) * (ii). see Proposition 1.1. Before proving that (i) 1* (iii) € (ix'). let us •

note that from (3.1) and Green's formutila. we have

f "A' = a(10 1, ,'V ) (4911K-, ,l V ).

S where uh1/O9VA E Vk vanishes in Hl(QOR ) (the validity of Green's formula above is due 5
to u E H'.A(S1)). By substit,,tion into (3.2). we get

(3.3) h(ORh(At, ),h) = ah(?1 - t, -h) + (AR+ - .A ,R). Vtsr E Vj'

4 S
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and hence

N N N

Fa(O(A).,K= ZaiAu - i~K) +Y Z(A,, - '.vj), Vi, E H,(r).h-I

(i) = (iii): Choose v E H0,(11) in the above relation. From (2.2) and A. (uh/,,/181) E A.-,

it follows that

N N

ah= K=1

But u - ii E H'(fQ) and 0A) E H'(Q) from (i), so that the above equality reads

a(O ). v,,) = a0u - Ut'). Vi, 4 HoE (I).

i.e. o(A) = u - ,i since a(-.-) satisfies (I.it/h),

(iii) =* (iv): If 0(\) = U - u, then (h( P 1, =(1 - 0j)boa and (3.3) yields

, v-l,-.,) =0. Vt., CE I I < E < N.

As a result. A 9 = 
8 1%1iVA (equality in VU,), 1 < K <_ N, i.e. A = IOu/ al'A).

(iv) = (i- : If A (Oua, /O8t'). then X, = Otuj, /Ot, A, I < K < N, and (3.3) sljows tlat

0,,(A-) is chlracterizecd by

ah'(6h(Ah'), t,,)= al,(i, - it.'l,), Vv'' E l,.,

But certainly Oh (A,, ) - (u - U l satisfies the above relatiou, anld hence is th, imique

solution of (3.3). This shows that o(A) = 1, - it E H(M) L;

Corollary 3.1: The functional 1

IK.L)4ET
I.>L

i i . .. /Il|Il -' i • ..



has the unique minimizer A = (On,- /O,,.). for which O(A) = I - it.

Proof: From (iv) - (ii) in Theorem 3.1. we have J((OUh/dl' 4 )) = 0, and hence A =

(Nhu/at, 4 ) is a 1,,J'Irmizer of J since J > 0. rhis also shows that J(A) = 0 for any

m inimizer of .' but then A = (1uh/1A03 ,) from (ii) (i% ') in Theorem 3.1. Thus, A =

(Ouh / JtA is the unique minimizer of J, and 0(A) = u - I by (iv) =* (iii) in Theorem

3.1. 1]

Corollary 3.1 suggests a strategy to calculate theZ erro1r 1 K. hy iiining thi fun-InI
tional J in (3.4). It is important to notice that the funuctinnal J is quadratic. More

specifically. denote by .11, C VI the (unique) solution of

a ) -it,,"k) = I, tv I',, h C I'5, .

and let U1 E C( Vi . V'h be defined hy i

A I U h -' i, h ) = (" ';, .P 5, ), V ;u , E V' ,, - 'it, E Vi,

Then. o 5 (A, )- U h5 h + .jI, .1 < K < N• , for A C A- and

J( A) { I , 5 Ah - UL.AL 10 + 1, (U,, + 2tkAA- )(U1 , -3 di) + 1,1, - lj. 0.

h>l

that is.

Q , i J 1 X 'lA l- ) 1 ( 1 - .4t )+ r11 , .,

where, for X.it A.- we have •et

1ý A,~n it = / 1 - UI \I, HUI, /it Ut, \1

A% >1.

( I,

lh~lo):lJ! S

K>0



Lernnia 3.1: The bilinerr mtapping at is itui innler proiducit iniA -

Proof. It is obvious that a is bilinear and s~ymmetric. That a(A, A) = 0 A = 0 follows

o from 6ii) =: (iii) in Theorem 3.1 for the special case when f = 0I (hence it 0) arld 0.=(

in (3.2). 0)

The norm in A_ induced by the ininer product a( will henceforth bie referredl tii as

the -a-norm". It is easily seen that A_ cannoit hie complete for the cr-niorm, and hence we

shall call A"S the coimpletioni of A for the at-norm,. From the trace theoirems. there is a

6 constant C > 0 such that

a ix.X)I!
2 

<_ C Vx AE

i.e. the it-norni is weaker than the 11 - 1. r norm in A_

Theorem 3.2: The functional J iscond tinuous anrid ciarcive iii A- eqiuippedl with the

cy-noriniA a result.- it can hie extendedl as a coint inuoucs ai,d cioetc-ive quadratic itarict ional

in A* with the same minimum svsine (that is. 0). In1 particular. A =(L% 1, /Oi' 1 remains

the unique minimizer of .1 in AS.

Proof: Continuity and coercivity oif .7 in A_ for the ar nornm is trivial from (3.5). That

it can lie extended to AS_ with the same riiinintrm s-sine is also trivial (using denseness of

A - III it-s coupiticon AS ), It thus retiain~s tuiniegatise andl hs- a uniqltie miniimizer in A!,

arid this minimizer most lie (Osh I, 1")A since J((Os,, /OiA)) o. 0-

We nosw face the key problem in followiung the abuose approuach In practice, the niinimizer

0111, 10uA) (iof J will lie obltainedu via minimiu izing sequences A) E A" By denseness of A-

in AV- such sequences cati he chosen iii A- ( atd evein ii A- by denseness of A_ in A- I.

andi fo~r each inlex w-e oilta anus elemient o(V E' H, P1. It is, easily seen thlit o( A'

need n,,st appr-oach Ii - I, in HI" I Pý as, tend, to 3o- This is relatetd iii thle fact t hat the

r- iairirti is tin waekl to ensire ciiit inuiity iif the hilinear fourm

N

tA. E _SH!; X,,I

10S



when A. is equipped with the a-norm. Thus, in practice. minimizing the functional J using

minimizing sequences (the only possible option snce (OulI"OI.A) is of course unknown) will

not necessarily provide the desired result, i.e. will not yield an approximation on to - ti in

H0'(P). Fortunately, this difficulty can be overcome because of the following result.

Theorem 3.3: Suppose that it E H'(fR) for some a > 3/2. Then:

(i) There are minimizing sequences (A)) of J such that A' E A- and (M') is bounded in

A- (that is, bounded in L2
(r 7 )).

(ii) If (AW) is a minimizing sequence of J such that A) • .\-A and (A)) is bounded in A-,

we have

lim 110(Aj) - (,t - ý)ll,.r -- 0.

Proof. If u E H'(Q) for s > 3/2. then OuIIOVA E H'-(rF, ) C L2(rj,), 1 < K <_

N. Thus. in particular, (OuK/)VA) E L
2
(rz). Also, if u E C(fl) it is obvious that

(OUK/&VA) E A_, and this relation remains valid for u E HI(Q)(s > 3/2) by denseness of

C-(Q) into H'(fl). continuity of the mapping T' E H'(Q) - (OtKi/OVA) E L'( r) aZnl

closedness of A. in L'(IF). Existence of minimizing sequences (A)) with A' E A,- and

(A)) bounded in A- follows at once from this result (choose e.g. A' = (ou%/49'A). Vj).

Next, let (AM) be any minimizing sequence of J such that A) E A- and (A) is bounded in
N

A_. By compactness of the embedding L2(r1,• \F) '-. V'k-, thereis A E (H0(P))' = .l'',

and a subsequence (A)*) such that lim lIArk - All.,r = 0. Thus. A E A.. by definitionk.oQ

of the space A,. Since the functional J is continuous for the c,-norm (see Theorem 3.2), •

hence for the stronger 11 - I..r norm. we have J(A) = lim J(A*' ), so that A minimizes J.

It follows that A = (Ouk ,OtVA) (see Theorem 3.2).

The above rev, Als that (al,O/VA) is the unique cluster point of the sequence (A') inl

A_. so that the whole sequence (A') converges to (Out,/OA) ii A... This amounts to

say;ng that A' tends to ait,-/ A4 in ',, for every 1 < K < N Now. from (3.3) we have

a, ( A
,a, .
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Taking the supremum over Vh" E Vh,J Irf'ln, < 1. and using the fact that a 1K, (,) satisfies

the conditions (.Ila/b), we get

II1C1K )-(,, - ,)I.Oh. 5 Ch JIAM - OU
K OA

where CK > 0 is a constant independent of j. Thus,

: 1K('X1) - (u - n,)1I2,.) !5 -y -K 2.

with C = max Ch, and the right-hand side is just CA) - ( " an hence tens
5< A'<N

to 0 as j tends to o as noted earlier in the proof. 0

By a method of proof similar to that of Thoerem 3.3, we obtain the following result

without any extra assumption of regularity for tine solution u:

Theorem 3.4: (i) There are minimizing sequences (A') of J with A) E A- and (A)

bounded in A.

(ii) If (A) is a minimizing sequence of J such that A) E Q and (AJ) is bounded in !2.

we have

limrn HO() - (u - . 0.

N

for every 0 < r < 1. where 11 lr' is the product norm of the space H'(P) = II H'(0).

Proof: (i) is trivial by considering the constant sequence (OU'K/49VA). (ii) Let (A)) be a

minimizing sequence in A_ which is bounded in .X_-, and let A be a cluster point of (A') for *N

tihe weak topology of A_, (A- is a closed subspace of the Hilbert s-pce .I qj/.). If (Am)

i, a subsequence tending to A, we still have J(A) = lir J(A'*) = 0 because J is convex
k& M

and continuous for the I"II 1 ',orm, hence weakly lower semicontinuous. Thus, once again.

% !€g014,/aKA) and the whole sequence (A)) tends weakly to (O K/,Ov.4). At this point.

note that together with this result, (3.3) implies that oh(A•) tends weakly to (u - t))ln I
in UV, if L., E GL(Vi, ) is defined by

aA (et.u'k) = (Lw ,, u't, ), '5,tt,' t,' 1 5 I ,

12



where (.,.) denotes the inner product of H'(fib'), we have Oh(A') - (u - =LK9'

where g)K E VA is defined by

(g.' "j,-(A' - t-'- ) V.,- , E V1 ,.

That g. - 0 in Vh follows from A. -OuA/149VA 0 ill I". and hence ,h') (u-ii)tn

by continuity of LK.

The theorem now follows front compactness of the embedding H'(f-) -. H'(fk) for

0 <r<1, 1<K<N. 0

The practical aspects of Theorems 3.3 and 3.4 is captured by the following corollary.

Corollary 3.2: Let B C A- be any closed ball such that (aUh/OVA) E B. Then. B is

closed in A'-, inf J(A) = inf J(A) and if A' E B is a minimizing sequence of J15 , we have
AEB ACA'

lim 10(A') - (U - f)Ilrr = 0,

for every 0 < r < 1.

Furthermore, if u E H'(fl) for some s > 3/2 and B C A- is any closed ball such

that (Otah/O'VA) E B. then B is rlosed in A'. inf J(A) = inf J(A) and if A) E B is a

minimizing sequence of JI.. we have AiB AEA'-

lira 1100j) - (it - f0h[.r, = 0.

Proof- That B is closed in A. follows from weak compactness of B in its ambient space:

If A) E B and A'- A c A' in A', let p E B be such that AJ* - y in A- or A. In both t

cases, this implies A - in kA: sine" the embeddings A- A - '--- A*- are continuous.

whencep = A and A E B. That the infimum of J is the same in B and iii the whole space

A:_ is trivial from (iul/Ozv) E B being the unique minimizer of J in A'. Convergence of

o(V' to u - 6i follows from Theorems 3.3 and 3.4. 0

In practical applications, the hypothesis that some ball B containing (O8u"/Oz'A) is

known is not a severe limitation since some useful information can he derived from the

approximate solution t. See Section 4.

13 0



4. Practical Aspects.

In practice, the appoximate solution ti will be a finite element approximation ti' E
V'h where V' is a finite element subspace of Ho'(f?) and the partition $" corresponds to

the partition of 0 into elements. It is certainly not restrictive to assume that u" is a

"reasonable" approximation of u, as opposed to a completely random element of iV, and

hence that despite the fact that 1ij - u111.n may not be small, or small enough, still

the derivative (84./8aVA) gives some idea of where in A,- (or A- if it E H'(Q), 8 >

3/2)(Nu./OVA) is. One problem is that, in general, (03uz./OvA) ý A-, but this is easily

remedied by replacing (8s /IOVA) by say, (S'-)li/° = (2(0u'.I/vA1 - O/Vi&A))(K.L)4EZ.

Other weighted averages, as suggested in I c ran also be used.

The ball B of Corollary 3.2 can be chosen as any ball with center (Ou/1 8
'A)I/2 and

arbitrary radius R > 0. Because of denseness of A- in A and M,, finite-dimensional ap-

proximations of the space A*- can he obtained by choosing a scale A' of finite-dimensional

subspaces of A-. One possible choice is given by collections A = (A,,) such that A,, is a

polynomial of degree < j on each face of 9,- not lying onI the boundary of S1. It should be

kept in mind that membership to A- requires the condition AKIrKL = -- ALir . and hence

AK and AL cannot be chosen independently. Because no continuity condition is required of

A,, at the intersection of two faces, bases for such spaces are easily found. For instance, if

j = 0. a basis is given by the collections (A KL) where A h'L = 0 if (K, L) ? (Ko. Lo) where

(Ko. Lo) E I satisfies K0 > Lo, AR0 [, = 1, .AL.ho = -1, letting (Ko, La ) run over all such

pairs. It should be clear how this procedure can be extended to obtain bases for arbitrary

polynomial degree j.

One may then define A) to be the minimizer of J in B r) A'. a closed convex subset of

A). The sequence (A') is a minimizing sequence for J in B. and hence the conclusion of

Corollary 3.2 regarding convergence of O(A)) to it - u0'(= u - fi here) applies. Rather than

minimizing J in B n AL- - 0 a constrained problem - it seems advisable to minimize J

in AM (a linear problem) and check whether this minimizer is in B. and modify the choice

of the umininmizer only if this is not the case (i.e. the minimizer is unreasonably far from
09U'A /itA),/2 ).

Naturally, replacing A. by a finite dinmensional approximation A-- is not enough. since



O(A) cannot be calculated exactly. However, since O(A) = (01, (A K')) is obtained by solving

independent local problems, numerical approximations can be obtained at a low cost with

high accuracy. In other words, the error between O(A) and its numerical approximation may

be considered negligible when compared with I u - u511,n. and hence tile convergence result

of Corollary 3.2 may be used safely with o(A) replaced by its numerical approximation.

Remark 4.1: When the spaces A' are those previously described, i.e. their elements are

collections of polynomials with degree < j on the interfaces, it is desirable that the space

chosen for the approximation of OK(AK) when A = (AK) E A'-, contains the polynomials

of degree <_ j + 1 in SIR. Indeed, AR is used to obtain an approximation of 4911/0a8. 4

whereas OR-(Ah ) represents an approximation of (u - uh')j,,, and hence polynomials with

degree at least j + 1 should be used to approximate Oh-(AR') for consistency (assuming

A = (a,) essentially constant on each element). The above considerations alsto show that

j + 1 should be at least equal to the degree of the polynomials used for the calculation of

u', which conies as no surprise. 0

5. Nonlinear problems.

Let a( ... ),aKl-, -) be the same bilinear forms as in Section 3, and let F : Q x R -- R

be a mapping such that F(., .) is of class C' for almost all x E fQ and F(-, y) is measurable

for every y E R. We also assume that there are constants ;>? 0, -Y > 0 such that

ID5,F(, y)l < d3 + .ylv-'

for almost all x E I and every y E R. wherre p > 2 is a real number satisfving p < ,2" if

n > 2. This implies that the mapping

F: u E LP(Q) • F(u) E LP'(f) (p" = p/(p - 1))

defined by F(u)(x= F(.r, ui(x)) is of class (" with derivative

DF(ulh = D 5 F(zr.z(xlh(x).

4s 0
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It then follows from Taylor's formula that

Ik(u) - F(t,)lo,-.,n !5 C((mea On)•L' + -y(IUI,Il2 + It,,! )11,,l -_ tO.P,
I

for every pair (u,tv) E (LP(I))
2

, where C > 0 is a constant independent of u and v.

This shows that if u' E Vh is a finite element approximation of u E Hj(fQ) such that

0 u U- u1o.P,.0
limllU U'll,,n=O, ll-o~,- =OI,.4~h- h-.O li - uAIIh

we have

$ (5.1) Ft'(u) - e(U&)Io,.,f _ E(h) Iti - 0111.g,

with lime(h) =0.h--0

Suppose now that u solves the problem

a( + j F(,),, f),, Vt'E H1(f0),

4 I
i.e. u E Ho'(0) and

-V -(AVu) + b Vu + cu + (u) =f in F.

In analogy with what was done in Section 3, let A E A- and solve, for 1 < K < N, •

{ah ¢t(00A)" '') =!,• .f,. - ai,-(,uh. r,,,)-f, F(Oh)v,,+ (,\,,,V/)

VvpK C V KO o

that is,

h, (I(, (Ai, vi, a = ,(u- ,h ?,) + (F(4) - F(t}h)l, + (A/, - - -t '0

(5.2) 1, 9VA

l' .t, Eli.

16
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4

By the method of proof of Theorem 3.1, it is easily seen that the only case when O(A) E
(OK(AK)) E H0(f1) is when 0\(A) coincides with the solution V,h E H0(fl) (not 1 "h) of

(5-3) ao(,h,v) = a((u - uh),t)+ j(F(t)- F(ut ))t, 't, E H1($ ),

and that if so, A,, = O(V,' + uh)k/.,vA. 1 < KI < N. In fact. in terms of ý,,h above, (5.2)

reads
( O(v,h + U)

aw(O(AK), K) = a, (0,A V,) + (Ah VA ,VA

Vt',K E Il-.

This relation can be used to show that if (AP) is a minimizing sequence of the functional J

of Section 3 (which now has unique minimizer (0 (1 h + Ut)I,'/OVA)) and if (A) is bounded

in A- then

(5.4) lim 110(Am) - •,5j,, = 0.

(And if (PA) is only bounded in A_

lim II0(A') - 0 11lr = 0 , VO < r < 1.)
) O0,

To obtain an estimate for 110(A') - (it - u5)Iht. , write

(5.5) II0(A') - - u')llr _< I•o(A) - ,.'"l,. + II(U - t,) - AI,,l,. S •

From (5.3),

aL ( - UA),t,) = J)F(u) - k(Uh)),.

Taking the supreutum over v E Ho(0), 1. Iillji < 1 and using the fact that ((..) satisfies S
(1.1a/b), we get

a - (u - Uh)lh.Q < sup /(F(ii)- F 1 h"Ih 11. 1,i

17..



where c > 0 is a constant independent of u and h. Next, using I fa(k(u) -- Flu 5 ))vI _

'( ) - '(tuh )lo.p" .*•vl~p.o and continuity of the embedding H0I(Q) '-- LP(fl), we obtain

110 - (u - uh)I 1.. _ CIF(t) - F(UA)10 ., ,

where C > 0 is a constant independent of u and h. Finally, using (5.1) we see that

lIV-, - (u - uh)11.h < Ce(h)Iju - u0ll.n.

Substituting into (5.5), we get

I0(A,) - (u - uh)Iiv < IIW'(.') - V'Ijii,r + Ce(h)Iju - u
5I1i,.

and, in particular, if (5.4) holds:

(5.6) lim )IJ(Mj) - (u - uh )lhi," ! Co(h)I1u - 01 n,0,

i.e. IIj'(.AJ) - (u - u4)Ihir becomes negligible with respect to Inu - u0II1n when d(X') is a

good enough approximation of V," because lime(h) = 0.
h-0

Remark 5.1: From (5.6), it also follows that u' + O(AP) is a better (enhanced) approx-

imation of u than uh. Interestingly, this enhanced solution is obtained by solving only

linear problems (calculation of 4k(AV)). []
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